Understanding How Young Children Learn:
Bringing the Science of Child Development to the Classroom
Wendy L. Ostroff, Ph.D.

Refocusing Teaching on Learning

How do we define learning???

What are the elements of learning that need to be there for it to occur?

Learning is...

- The matter of our minds (thinking, becoming aware, imagining, seeing, hearing, hoping, remembering, abstracting, planning and problem solving)
- Deep in our species (desire to take in new information by actively exploring new territory)
- A physical phenomenon (in the sensory systems, as energy from light waves and vibrations in the air is converted into electrical impulses that can be interpreted by the nervous system)
- In the brain (neurons send out neurotransmitters and forge networks of connections)
- In the body (motor patterns are encoded for actions)
- Embedded in the world (life experiences, social interactions and community membership)
Components of Learning

Motivation
Attention
Memory
Cognition
Action

Propellers of Learning

Motivation
Habituation & Novelty
Joining the Community
Confidence
Play

Attention
Self-Regulation
Executive Control
Movement

Memory
Working Memory
Scripts, Schemas & Stories
Mnemonic Devices
Knowledge & Expertise

Cognition
Implicit Learning
Imitation
Emotion

Action
Metacognition
Articulation
Collaboration

Novelty

Learning happens without conscious effort
Confidence

Classic Example: Darley & Latane, 1968

From the Lab:

Confidence Propels Motivation

- Findings
 - Children over-estimate their abilities
 - Try to imitate feats way beyond their grasp
 - Word Recall Memory Test: Less Accurate Predictions = Better Performance

From the Lab:

Visualization Propels Motivation

- Findings
 - Two groups with no piano playing experience
 - Taught 5-finger piano exercise
 - Group 1: Practiced on piano 2hr/day for 5 days
 - Group 2: Imagined and visualized practicing
 - Brains of both groups showed structural changes
 - Performance in both groups improved significantly
Play Propels Motivation

Findings
- Two groups of children brought into the lab for a problem solving task
- Group 1: Allowed unstructured free play with the objects beforehand and no instructions
- Group 2: Given instructions on how to use the objects
- Free play group able to solve complex problems more effectively
From the Lab:

Private Speech Propels Attention

- **Findings**
 - Seven- to 10-years olds asked to complete Tower of London task with a distracter
 - Group 1: Repeat the word “Monday”
 - Group 2: Tap feet
 - Children with disrupted private speech performed significantly more poorly
Movement

• Self-Regulation
• Aerobic Activity
• "Do the Information"

Wire together; fire together

From the Lab:

Gesture Propels Cognition

• Findings
 • Children asked to explain their solutions to difficult math problems
 • Group 1: Asked to gesture as they explained
 • Group 2: Asked to only verbally explain
 • Gesturing group more likely to add new, correct problem solving strategies to their repertoires
 • Gesturing group also more likely to attempt and succeed in difficult problems later

Collaboration

Learning and Solving Problems Together
From the Lab:

Collaboration Propels Action

- **Findings**
 - Children over-inflate their contribution to joint learning efforts
 - Those who over-estimated their contribution outperformed the others in future solo tasks

Onward From Here...

More Conversation | More Access | More Integration

CONTACT INFO:

Wendy L. Ostroff
wostroff@curry.edu

© 2013 ASCD